N69-14950 mosa CR-92442

# RATIONAL APPROXIMATIONS TO TROMIS Y FUNCTION

INTERIM REPORT June 1968

MRI Project No. 3162-P

Contract No. NAS 9-7641

For

NASA Manned Spacecraft Center General Research Procurement Branch Houston, Texas 77058

Attn: J.W. Carlson/BG731(48)



MIDWEST RESEARCH INSTITUTE
425 VOLKER BOULEVARD/KANSAS CITY, MISSOURI 64110/AC 816 LO 1-0202

NASA CR 92442

### RATIONAL APPROXIMATIONS TO TRICOMI'S Y FUNCTION

bу

Jerry Fields Jet Wimp

INTERIM REPORT June 1968

MRI Project No. 3162-P

Contract No. NAS 9-7641

For

NASA Manned Spacecraft Center General Research Procurement Branch Houston, Texas 77058

Attn: J.W. Carlson/BG731(48)



MIDWEST RESEARCH INSTITUTE

425 VOLKER BOULEVARD/KANSAS CITY, MISSOURI 64110/AC 816 LO 1-0202

# PREFACE

This report, written by Jerry Fields and Jet Wimp, Mathematics Branch, Midwest Research Institute, covers work performed from 20 March through 19 June 1968 on Contract No. NAS 9-7641.

Approved for:

MIDWEST RESEARCH INSTITUTE

Sheldon L. Levy, Director

Mathematics and Physics Division

1 July 1968

In this paper we derive closed form rational approximations to the Tricomi  $\Psi$  function ([1]),

$$\Psi(a,c;v) = \frac{1}{\Gamma(a)} \int_{0}^{\infty e^{i\phi}} e^{-vt} t^{a-1} (1+t)^{c-a-1} dt ,$$
(1)
$$Re \ a > 0 \ , \ |arg(e^{i\phi}v)| < \pi/2 \ , \ -\pi < \phi < \pi ,$$

which converge uniformly on compact subsets of the sector  $|\arg v| < \pi/2$ ,  $v \neq 0$ . As Tricomi's  $\Psi$  function can be written in terms of the Meijer G-function ([1])

$$\Psi(a,c;v) = \frac{v^{-a}}{\Gamma(a)\Gamma(1+a-c)} G_{2,1}^{1,2} \left(v^{-1} \middle| \begin{array}{c} 1-a,c-a \\ 0 \end{array}\right) , \qquad (2)$$

we actually develop rational approximations to the G-function

$$E(v) = G_{2,1}^{1,2} \left( v^{-1} \Big|_{0}^{1-\alpha_{1},1-\alpha_{2}} \right)$$

$$= \frac{1}{2\pi i} \int_{T_{1}} \Gamma(-s) \Gamma(s+\alpha_{1}) \Gamma(s+\alpha_{2}) v^{-s} ds , |\arg v| < 3\pi/2 , \qquad (3)$$

where the contour L runs from  $-i\infty$  to  $+i\infty$ , and separates the poles of  $\Gamma(-s)$  from those of  $\Gamma(s+\alpha_1)\Gamma(s+\alpha_2)$ , see [1]. If  $\alpha_1-\alpha_2$  is not an integer, it follows from the residue theorem that

$$E(v) = \Gamma(\alpha_{2} - \alpha_{1})\Gamma(\alpha_{1})v^{\alpha_{1}}_{1}F_{1}\begin{pmatrix} \alpha_{1} \\ 1 + \alpha_{1} - \alpha_{2} \end{pmatrix}v$$

$$+ \Gamma(\alpha_{1} - \alpha_{2})\Gamma(\alpha_{2})v^{\alpha_{2}}_{1}F_{1}\begin{pmatrix} \alpha_{2} \\ 1 + \alpha_{2} - \alpha_{3} \end{pmatrix}v$$

$$(4)$$

Our rational approximations for E(v) are obtained as follows. If the contour L in (3) is moved k units to the right, we obtain

$$E(v) = \Gamma(\alpha_1)\Gamma(\alpha_2) \sum_{j=0}^{k-1} (\alpha_1)_j (\alpha_2)_j \frac{(-v)^{-j}}{j!} + R_k(v),$$

$$R_{k}(v) = \frac{(-v)^{-n}}{2\pi i} \int_{L} \frac{\Gamma(-s)\Gamma(s+1)\Gamma(s+n+\alpha_{1})\Gamma(s+n+\alpha_{2})}{\Gamma(s+1+n)} v^{-s} ds , \qquad (5)$$

$$(\sigma)_{\mu} = \frac{\Gamma(\sigma + \mu)}{\Gamma(\sigma)}$$

As it can be shown that  $R_k(v) = \mathcal{O}(v^{-k})$  as  $v \to \infty$  and  $|\arg v| < 3\pi/2$ , (5) is a paraphrase of the statement

$$E(v) \sim \Gamma(\alpha_1)\Gamma(\alpha_2) {}_{2}F_{0}\left(\alpha_1,\alpha_2\right) - \frac{1}{v}\right) ,$$

$$v \rightarrow \infty , |\arg v| < 3\pi/2$$
(6)

Multiplying the first line of (5) by arbitrary  $A_{n,k}\gamma^k$ , and summing from k=0 to a fixed integer n, we obtain the equations

$$h_n(Y)E(v) = \psi_n(v,Y) + F_n(v,Y)$$

$$h_n(\gamma) = \sum_{k=0}^{n} \gamma^k A_{n,k}, F_n(v,\gamma) = \sum_{k=0}^{n} \gamma^k A_{n,k} R_k(v)$$
 (7)

$$\psi_{\mathbf{n}}(\mathbf{v},\mathbf{y}) = \sum_{k=0}^{\mathbf{n}} \mathbf{y}^{k} \mathbf{A}_{\mathbf{n},k} \Gamma(\alpha_{1}) \Gamma(\alpha_{2}) \sum_{j=0}^{k-1} (\alpha_{1})_{j} (\alpha_{2})_{j} \frac{(-\mathbf{v})^{-j}}{j!}$$

Then we see that  $\psi_n(v,\gamma)/h_n(\gamma)$  is a formal rational approximation to E(v) and  $F_n(v,\gamma)/h_n(\gamma)$  is its corresponding error. The triangular form  $\psi_n(v,\gamma)$  can also be written as

$$\psi_{n}(v, \gamma) = \Gamma(\alpha_{1})\Gamma(\alpha_{2}) \sum_{k=0}^{n} \sum_{j=0}^{n-k} A_{n, j+k} \frac{(\alpha_{1})_{j}(\alpha_{2})_{j}(\gamma)^{k}(-\gamma/v)^{j}}{j!} . (8)$$

In Fields [2], the above formulation was shown to be equivalent to the Lanczos  $\tau$ -method, see [3], and the following theorem was proved.

Theorem 1. If  $|\arg v| < \pi/2$ ,  $v \neq 0$ , and

$$h_{n}(Y) = {}_{2}F_{2}\left(\begin{array}{c} -n, n+\lambda \\ 1+\alpha_{1}, 1+\alpha_{2} \end{array}\right| -Y\right), \quad \lambda > 0 , \qquad (9)$$

then

$$\lim_{n \to \infty} \frac{\psi_n(v,v)}{h_n(v)} = E(v) , \lim_{n \to \infty} \frac{F_n(v,v)}{h_n(v)} = 0 . \tag{10}$$

As the asymptotic estimate

$$2^{F_2} \left( \frac{-n, n+\lambda}{1+\alpha_1, 1+\alpha_2} \middle| -v \right) \sim \frac{\Gamma(1+\alpha_1)\Gamma(1+\alpha_2)}{2\pi\sqrt{3}} (n^2 v)^{\mathsf{T}} \exp \left( 3(n^2 v)^{\frac{1}{3}} - \frac{v}{3} \right)$$

$$\times \left\{ 1 + \mathcal{O}(n^{-\frac{2}{3}}) \right\} ,$$

$$\tau = -(1+\alpha_1+\alpha_2)/3 ; n \to \infty , |\arg v| < \pi , \qquad (11)$$

was already known, see [4], the proof of Theorem 1 reduced to obtaining a proper estimate for  $F_n(v,v)$ . This was effected by showing that the differential operator which annihilates E(v),

$$\mathcal{H} = (\delta - \alpha_1)(\delta - \alpha_2) - v\delta$$
,  $\delta = v \frac{d}{dv}$ , (12)

when applied to  $F_n(v,Y)$  yields

$$\mathcal{H}\left\{F_{n}(v,Y)\right\} = -\sum_{k=0}^{n} A_{n,k} \frac{\Gamma(k+1+\alpha_{1})\Gamma(k+1+\alpha_{2})}{k!} \left(-\frac{Y}{v}\right)^{k} . \tag{13}$$

Thus, if the  $A_{n,k}$  are chosen as indicated in (9), the right-hand side of (13) is essentially a Jacobi polynomial which has a uniform algebraic rate of growth in n,  $o(n^{\circ})$ , for  $0 \le \gamma/v \le 1$ . A variation of parameters' technique then implies

$$F_n(v,v) = \mathfrak{G}(n^{\sigma}), n \rightarrow \infty, v \text{ fixed } .$$
 (14)

Note that in Theorem 1, the parameter  $\lambda$  is essentially unspecified. By specializing  $\lambda$  and considering difference instead of differential operators, we obtain, among other benefits, a more convenient formulation of the error  $F_n(v,v)$ .

Let

$$U(\mu,n,\lambda) = \frac{(n+\lambda-1)(n+\mu)}{2n+\lambda-1} E^{\circ} - \frac{n(n+\lambda-1-\mu)}{2n+\lambda-1} E^{-1} ,$$

$$U*(n,\lambda) = \lim_{\mu \to \infty} \frac{U(\mu,n,\lambda)}{\mu} ,$$

$$(15)$$

where  $E^{-j}$  is the shift operator on n , i.e.,  $E^{-j}\left\{f(n)\right\} = f(n-j)$  , and

$$M(\gamma) = U(0,n,\lambda-2)U(\alpha_1,n,\lambda-1)U(\alpha_2,n,\lambda)-n(n+\lambda-3)\gamma E^{-1}U^*(n,\lambda)$$

$$= A_{O} \left[ E^{O} + \sum_{j=1}^{3} \left[ A_{j} + \gamma B_{j} \right] E^{-j} \right], A_{O} = \frac{n(n+\alpha_{1})(n+\alpha_{2})(n+\lambda-3)_{3}}{(2n+\lambda-3)_{3}},$$

$$A_{1} = \frac{(n-1)(2n+\lambda-2)_{2}(n+\alpha_{1}-1)(n+\alpha_{2}-1)}{(n+\lambda-1)(2n+\lambda-4)(n+\alpha_{1})(n+\alpha_{2})} - \frac{n(2n+\lambda-2)}{(n+\lambda-1)},$$

Equation (16) concluded next page.

$$A_{2} = \frac{(n-1)(2n+\lambda-1)(n+\lambda-\alpha_{1}-2)(n+\lambda-\alpha_{2}-2)}{(n+\lambda-1)(n+\alpha_{1})(n+\alpha_{2})} - \frac{(n-1)(n+\lambda-3)(2n+\lambda-2)_{2}(n+\lambda-\alpha_{1}-3)(n+\lambda-\alpha_{2}-3)}{(n+\lambda-2)_{2}(2n+\lambda-5)(n+\alpha_{1})(n+\alpha_{2})},$$

$$A_{3} = \frac{(n-2)_{2}(2n+\lambda-2)_{2}(n+\lambda-\alpha_{1}-3)(n+\lambda-\alpha_{2}-3)}{(2n+\lambda-5)_{2}(n+\lambda-2)_{2}(n+\alpha_{1})(n+\alpha_{2})}$$

$$B_{1} = -\frac{(2n+\lambda-2)_{2}}{(n+\lambda-1)(n+\alpha_{1})(n+\alpha_{2})}, B_{2} = -\frac{(n-1)(2n+\lambda-2)_{2}}{(n+\lambda-2)_{2}(n+\alpha_{1})(n+\alpha_{2})}, B_{3} = 0 . (16)$$

We then have

Theorem 2. If the  $A_{n,k}$  are chosen so that

$$h_{n}(\gamma) = {}_{2}F_{2}\begin{pmatrix} -n, n+\lambda \\ 1+\alpha_{1}, 1+\alpha_{2} \end{pmatrix} - \gamma$$

$$\psi_{n}(v,\gamma) = \Gamma(\alpha_{1})\Gamma(\alpha_{2}) \sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(-n)_{k+j}(n+\lambda)_{k+j}(\alpha_{1})_{j}(\alpha_{2})_{j}(-\gamma)^{k}(\gamma/v)^{j}}{(1+\alpha_{1})_{k+j}(1+\alpha_{2})_{k+j}(k+j)!j!} ,$$
(17)

then

$$M(\gamma) \left\{ h_n(\gamma) \right\} = 0$$

$$M(\Upsilon) \left\{ \psi_{\mathbf{n}}(\mathbf{v}, \Upsilon) \right\} = -\mathbf{n}(\mathbf{n} + \lambda - 3) \Gamma(\mathbf{1} + \alpha_{\mathbf{L}}) \Gamma(\mathbf{1} + \alpha_{\mathbf{L}}) (\Upsilon/\mathbf{v}) \,_{2} F_{\mathbf{L}} \left( \begin{array}{c} -\mathbf{n} + \mathbf{1}, \, \mathbf{n} + \lambda - 2 \\ 2 \end{array} \right) \left\{ \begin{array}{c} \Upsilon \\ \mathbf{v} \end{array} \right\} , \quad (18)$$

$$M(v) \left\{ \psi_{\mathbf{n}}(v,v) \right\} \approx (-1)^{n} \frac{\Gamma(n+\lambda-2)\Gamma(1+\alpha_{1})\Gamma(1+\alpha_{2})}{\Gamma(n)\Gamma(\lambda-2)}$$

<u>Proof.</u> All these results follow directly by computation from the operator equations

$$U(\mu,n,\lambda) \left\{ (-n)_{S}(n+\lambda)_{S} \right\} = (-n)_{S}(n+\lambda-1)_{S}(s+\mu) ,$$

$$U*(n,\lambda) \left\{ (-n)_{S}(n+\lambda)_{S} \right\} = (-n)_{S}(n+\lambda-1)_{S}$$

$$(19)$$

Corollary 2.1. If in Theorem 2,  $\lambda$ -3 is a negative integer, then

$$M(v)\left\{F_{n}(v,v)\right\} = 0 \tag{20}$$

Hence, to analyze the error  $\,F_n(v,v)\,$  , in this case, it is sufficient to analyze the equation

$$M(v) \left\{ g_n(v) \right\} = 0 \tag{21}$$

To do this, we introduce some recent results of Wimp, [5]. Let

$$g_{n}(w) = \frac{\Gamma(n+1)}{\Gamma(n+\lambda)} G_{2,3}^{3,1} \left( w \begin{vmatrix} 1-n-\lambda, n+1 \\ 0, -\alpha_{1}, -\alpha_{2} \end{vmatrix} \right) ,$$

$$= \frac{1}{2\pi i} \int_{L} \frac{\Gamma(-s)\Gamma(-s-\alpha_{1})\Gamma(-s-\alpha_{2})(n+\lambda)_{s}}{(n+1)_{-s}} w^{s} ds ,$$
(22)

then Wimp's work\* shows that

<sup>\*</sup> This is not quite the function that Wimp treated in [5]. But a close inspection of that work shows that his analysis is actually applicable. The identification process with Wimp's work is made by replacing his  $\lambda$ , n and  $\gamma$  by w, n+ $\lambda$  and - $\lambda$ , respectively. Also, the application of Lemma 3 in this reference is made easier by employing the fact  $2d_1-d_2=1+\gamma$ .

$$g_{n}(w) \sim \frac{(2\pi)}{\sqrt{3}} \left[ n^{2} w \right]^{T} \exp \left( -3 \left[ n^{2} w \right]^{\frac{1}{3}} + \frac{w}{3} \right) \left\{ 1 + \sigma(n^{-\frac{1}{3}}) \right\} ,$$

$$\tau = -(1+\alpha_{1}+\alpha_{2})/3 ; n \longrightarrow +\infty , |\arg w| < 3\pi/2 .$$
(23)

This leads to our main result,

Theorem 3. If  $|\arg v| < \pi/2$ ,  $v \ne 0$ , then  $g_n(ve^{\pi i})$ ,  $g_n(ve^{-\pi i})$  and  $h_n(v)$  as defined by (17) form a basis of solutions for the difference equation (21).

<u>Proof.</u> It follows from (11) and (23) that the three functions are linearly independent as functions of n in the right half plane. A direct computation using the integral representation in (22) and an analog of (19) shows that  $g_n(ve^{\frac{1}{2}\pi i})$  satisfy (21).

#### Corollary 3.1. If

$$h_{n}(v) = {}_{2}F_{2}\begin{pmatrix} -n, n+\lambda \\ 1+\alpha_{1}, 1+\alpha_{2} \end{pmatrix} - v , \quad \lambda = 1 \text{ or } 2 ,$$

$$\psi_{n}(v, v) = \Gamma(\alpha_{1})\Gamma(\alpha_{2}) \sum_{k=0}^{n} \sum_{j=0}^{n-k} \frac{(-n)_{k+j}(n+\lambda)_{k+j}(\alpha_{1})_{j}(\alpha_{2})_{j}(-v)^{k}}{(1+\alpha_{1})_{k+j}(1+\alpha_{2})_{k+j}(k+j)! j!}$$
(24)

and  $|\arg\,v\,|<\pi/2$  ,  $v\neq0$  , then there exist well defined analytic functions  $C^-(v)$  ,  $C^+(v)$  independent of n such that

$$\sim \sum_{\varepsilon=+,-} \frac{c^{\varepsilon}(v)4\pi^{2}}{\Gamma(1+\alpha_{1})\Gamma(1+\alpha_{2})} \exp\left(-3\sqrt{3}(n^{2}ve^{i\varepsilon\pi/2})^{\frac{1}{3}}+i\pi\varepsilon\tau\right) \left\{1+\mathcal{O}(n^{-\frac{1}{3}})\right\}, n\to\infty.$$

<u>Proof.</u> Clearly, the left-hand side of (25) is just the error  $F_n(v,v)/h_n(v)$ . From Corollary 2.1 and Theorem 3 it follows that there exist functions  $C^{\varepsilon}(v)$ ,  $\varepsilon$  = +,-,0, in |arg v| <  $\pi/2$ , such that

$$F_n(v,v) = C^+(v)g_n(ve^{+\pi i}) + C^-(v)g_n(ve^{-\pi i}) + C^0(v)h_n(v)$$
 (26)

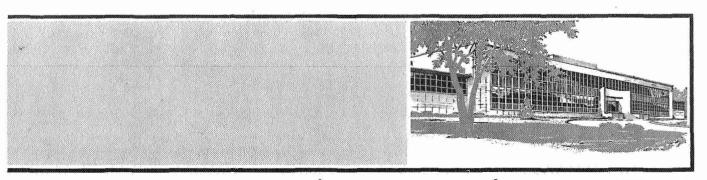
The functions  $C^\varepsilon(v)$  can be found in theory by setting n equal to zero, one and then two in the first line of (25) and then solving the resulting equations. The linear independence of  $g_n(ve^{-\pi i})$ ,  $g_n(ve^{+\pi i})$  and  $h_n(v)$  implies the analytic character of the  $C^\varepsilon(v)$  in |arg  $v|<\pi/2$ ,  $v\neq 0$ . From Theorem 1, we deduce that  $C^\circ(v)$  is identically zero in |arg  $v|<\pi/2$ . Equation (26) then reduces to the first line of (25). The last line of (25) follows from the preceding asymptotic estimates and the simple fact,  $\sqrt{3}e^{i\varepsilon\pi/6}=1+e^{\varepsilon\pi i/3}$ ,  $\varepsilon=\pm 1$ .

Corollary 3.2. The sequence of rational approximations in Corollary 3.1 converges uniformly to  $G_2^{1,2} \left(v^{-1}\Big|_{0}^{1-\alpha_1,1-\alpha_2}\right)$  on compact subsets of  $|\arg v| < \pi/2$ ,  $v \neq 0$ .

Finally, we reiterate the main advantages of the rational approximations in Corollary 3.1. First, they are explicit, as opposed to mini-max rational approximations which, in general, can only be given numerically. Second, they can be computed fairly easily, due to the fact that both numerator and denominator polynomials,  $\psi_n(v,v)$  and  $h_n(v)$ , satisfy the same third order recursion relation. And last, an explicit form for the error is known.

## BIBLIOGRAPHY

- 1. A. Erdélyi, et al., <u>Higher Transcendental Functions</u>, Vol. I, McGraw-Hill, New York, 1953.
- 2. J.L. Fields, "Rational Approximations to Generalized Hypergeometric Functions," Math. Comp., 19 (1965), 606-624.
- 3. C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1956.
- 4. J.L. Fields and Y.L. Luke, "Asymptotic Expansions of a Class of Hyper-geometric Polynomials with Respect to the Order, II," J. Math. Anal. Appl., 7 (1963), 440-451.
- 5. J. Wimp, "The Asymptotic Representation of a Class of G-Functions for Large Parameter," Math. Comp., 21 (1967), 639-646.



MIDWEST RESEARCH INSTITUTE 425 VOLKER BOULEVARD KANSAS CITY, MISSOURI 64110